Real-Time Embedded
Computing Systems

Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa

ketis

Real-Time Systems Laboratory

X ris Computers everywhere

it Tirna Bysieres Laborssary

Today, 98% of all processors in the planet are
embedded in other objects:

A e Increasing complexity
functions
|in a cell phone
200 +
80 -
60 -
40 -
20 -
0 ' ' ! T T T T T
1970 1980 1990 2000 2010 year
2 pis ECU growth in a car
ECUs
1inacar
100 -
' 2010 vear

1970

1980 1990 2000

20 yis Software in a car

2al-Tima Systers,

Car software controls almost everything:

* Engine: ignition, fuel pressure, water temperature,
valve control, gear control,

Dashboard: engine status, message display, alarms

Diagnostic: failure signaling and prediction

Safety: ABS, ESC, EAL, CBC, TCS

Assistance: power steering, navigation, sleep sensors,
parking, night vision, collision detection

Comfort: fan control, air conditioning, music,
regulations: steer/lights/sits/mirrors/glasses...

*..., Software evolution in a car

2al-Tima Systers,

Lines of code
109 ina car

108
107
106
10°
104
103
102

T T T T T T

1980 1990 2000 2010

X is Software reliability

Reliability does not only depend on the correctness of
single instructions, but also on when they are
executed:

controlle

/

A correct action executed too late can be useless or
even dangerous.

B Real-Time System

A computing system that must guarantee
bounded and predictable response times
is called real-time system.

Predictability of response times must be guaranteed
in the worst-case scenario:

» for each critical activity;

» for all possible combination of events.

.......

Outline

1.

Basic concepts

Modeling real-time activities

. Where timing constraints come from?

Real-time scheduling algorithms

Handling shared resources

Basic concepis

..., A sample control application

Mobile robot equipped with:
» two actuated wheels;

» two proximity sensors;

» a mobile camera;

> a wireless transceiver.

Goal

» Follow a path based on visual information;
» Avoid obstacles;

» Send system status every 20 ms.

E Control view
visual-based
"l navigation
| 50m obstacle
obJe_c'F - avoidance
recognition
10 ms
visugl vehicle
tracking control

Y . 1 A Y
motor motor (} (] ‘ motor ‘ motor
control control control control

(MW 1msl((MW 1ms (M

feature
extraction

camera pan tilt Usl US2 mot_dx mot_sx

...................

Software view

O periodic task

|:| buffer

()
visual-based obstacle
navigation aVOidancem —
object
recognition |—]
visual vehicle
| tracking control
C feature [
extraction
motor
trol
camera pan tilt Us1 Us2 mot_dx mot_sx
i Software structure
—> OUTPUT
g
Y <= INPUT
[N

o

task

[]

buffer

B Real-Time System

It is a system in which the correctness depends
not only on the output values, but also on the time
at which results are produced.

X ()

Environment

y(t+A)

2 pis RTOS responsibilities

The real-time operating system is responsible for:

» activating periodic tasks at the beginning of each
period;

» deciding the execution order of tasks (scheduling);

» solving possible timing conflicts during the access of
shared resources (mutual exclusion);

» manage the timely execution of asynchronous
events (interrupts).

X ris Real-Time # Fast

» Areal-time system is not a fast system.

» Speed is always relative to a specific
environment.

» Running faster is good, but does not
guarantee a correct behavior.

*...s Speed vs. Predictability

e The objective of a real-time system is to guarantee
the timing behavior of each individual task.

e The objective of a fast system is to minimize the
average response time of a task set. But ...

Don’t trust the average when you have to
guarantee individual performance

%*..;s Sources of non determinism

>

Architecture
= cache, pipelining, interrupts, DMA

Operating system
= scheduling, synchronization, communication

Language
= |ack of explicit support for time

Design methodologies
= lack of analysis and verification techniques

Modelling
real-time tasks

Task

» Sequence of instructions that in the absence of
other activities is continuously executed by the
processor until completion.

activation time

Task t,

start time

computation |

time

.
>._

I]
v 4

The interval f; — g
is referred to as the

finishing time

task response time R;

Ready queue

In a single processor system more tasks can be
ready to run, but only one can be in execution.

> Ready tasks are kept in a ready queue, ordered by a
scheduling policy.

» The processor is assigned to the first task in the queue
through a dispatching operation.

activation __ Ready queue qicnaiching termination
— (T3 (T T

X ris Preemption

It is a kernel mechanism that allows to suspend
the running task in favor of a more important task.

activation Ready queue dispatching termination

E—— T3 [T | 11

T

» Preemption allows reducing the response times of
high priority tasks.

preemption

» It can be temporarily disabled to ensure
consistency of certain critical operations.

B e Schedule

It is a particular task execution sequence:

Formally, given a task set I' = {t,, ..., 1.}, @ schedule is a
function o: R* —> N that associates an integer k to each
interval of time [t, t+1) with the following meaning:

k=0 === in[t, t+1)the processoris IDLE

k>0 === jn[t, t+1)the processor executes T,

...................

o(t)

o P N W

20

...................

Task states

o(t)

o P N W

running

]

running! ! running!

I

ready

1

oo

running Loy | running

0

2 416 8 10 12 14 16 18

20

X ris Task states

BLOCKED
wait
dispatching b .
b termination
RUNNI@—

signal

activation

preemption

ACTIVE

X ris Real-Time Task

2al-Tima Systers,

» It is a task characterized by a timing constraint on its
response time, called deadline:

relative deadline D,

A T
4 Si fi d;
| - absolute deadline
response time R; ‘ (d=a+R)

A real-time task t; is said to be feasible if it
completes within its absolute deadline, that
is, if f;, < d,, o equivalently, if R; <D;

s Slack and Lateness
D;
T I | O [l
q S; fi di t
| R; | slack; = d; - f;
D; _Iateness L, =f -d
Ti I I 1 = l|—|
ai Si : fi t
: ~
B Tasks and jobs

A task running several times on different input
data generates a sequence of instances (jobs):

Job 1 Job 2 Job 3
Tin Ti,2 Ti3
/% 14 A N e A
T l I =n | I = |
dik di k+1 t

Periodic tasks

......

C, computation time i
utilization factor

™\ timer (period T;)

» A periodic task 1, generates an infinite sequence of

jobs: 14, Tip, ..., T (same code on different data):
Ti
G
T [T T1 [1] [T T1
R pis Periodic task model
Ti (Cl ' Tl ’ DI) jOb Tik
Ci
= Hm lh | m nlI
a1 = i ik ai k+1
task phase
aixk = Oit+(k-1) T; f often |

dix = aix + D;

(D=

..., Estimating C,; is not easy

» Each job operates on different data and
can take different paths.

» Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

loop
?
occurrencies

execution

“'l“ll fime
c

timer min ax
i

C

%*..;s Predictability vs. Efficiency

occurrencies

[T execution
i ‘ ' ! time
min avg ! max !
Ci Ci Ci :
o o o~ C, estimate

unsafe efficient safe

..............

Eatury

Predictability vs. Efficiency

efficiency

predictability

..., Support for periodic tasks

..............

nnnnn

Ti

task t;

while (condition) {

wait_for_period();
}
. active active
running A ‘
L] []

ready idle idle idle

2o is The IDLE state

2al-Tima Systers,

1 [] ‘l_l

BLOCKED

terminate

activate dispatching
—{ READY RUNNING
preemption
wake_up wait_for_period
Timer
A i Jitter

2al-Tima Systers,

a ot az tp a3 f3 s

Absolute: max (t, —a,) — min (t, —a,)
k k

Relative: mI?X | (t—a) — (fea—2aq) |

X ris Types of Jitter

it Tirna Bysieres Laborssary

Finishing-time Jitter

L — = [—
fi1 fi2 fis
Start-time lJitter
: e
I 1] 1 [
Si1 Si,2 Si;3

Completion-time Jitter (1/0 Jitter)

| = 4
sit fia S|2 f|2 Si3 fi,3

Where timing
constraints
come from?

20 yis Timing constraints

..........

They can be explicit or implicit.

« Explicit timing constraints
They are directly included in the system specifications.

Examples
—open the valve in 10 seconds
— send the position within 40 ms
—read the altimeter every 200 ms
—acquire the camera every 20 ms

%*..;. Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the performance
requirements.

Example

What is the time validity of a sensory data?

*..,, Example: automatic braking

% sensor visibility
D> D obstacle
—]
human Dashboard Dlstrlb_utlon BRAKES
Controls Unit
emergency
SENSOrs [condition stop
[checker

43

B Worst-case reasoning

acq.
wk 5 H N H
Ts A Tb
Vv
obstaclein obstacle brake train

the field detected pressed stopped

44

D = sensor visibility

V(T,+4) + X, < D

a=ug
X, = vt— Tat?
2 2
Y
v =at Xy =
2ug

2

V(T,+A) + — < D
219

45

A
Tmax

Vi = /(A10)° +2Dpg — Arg

Y, VAR speed

46

Real-Time
Scheduling
Algorithms

2 Problem formulation

...................

Ti (Ci’ Ti, Di) job Tik

e
t=0 Fik di

For each periodic task T; guarantee that:
> each job Tik is activated at Tk = (k-1)T;

> each job Tik completes within dik = rik + D;

sy Timeline Scheduling

..........

It has been used for 30 years in military
systems, navigation, and monitoring systems.

Examples
— Air traffic control systems
— Space Shuttle
— Boeing 777

— Airbus navigation system

49

sy Timeline Scheduling

..........

Method

e The time axis is divided in intervals of equal
length (time slots).

e Each task is statically allocated in a slot in
order to meet the desired request rate.

e The execution in each slot is activated by a
timer.

50

X, is Example

task f T
40Hz | 25ms A =GCD (minor cycle)

20Hz | 50 ms T=1Icm (major cycle)

10 Hz | 100 ms
A T
0 25 50 75 100 125 150 175 200
<
Guarantee: Cat Cy<A
Co+Cc<A
k- Implementation

timer
minor
cycle
T2 — timer
major
: cycle
T2 — timer y
T2 — timer

52

Kooris Timeline scheduling

...........

Advantages

e Simple implementation (no real-time operating
system is required).

e Low run-time overhead.

e |t allows jitter control.

53

X ris Timeline scheduling

...........

Disadvantages
e Itis not robust during overloads.
e It is difficult to expand the schedule.

e It is not easy to handle aperiodic activities.

54

What do we do during task overruns?

e Let the task continue

— we can have a domino effect on all the other
tasks (timeline break)

e Abort the task

— the system can remain in inconsistent states.

55

20 yis Expandibility

...........

If one or more tasks need to be upgraded, we may
have to re-design the whole schedule again.

Example: Bisupdated but C,+Cg>A
A

)

0 25

56

A ris Expandibility

eul-Time Sysierms Labatatary

e We have to split task B in two subtasks (B,,
B,) and re-build the schedule:

| A B ABZCA81%‘
0 25 50 75 100

Guarantee: [

57

oris Expandibility

eul-Time Sysierms Labatatary

If the frequency of some task is changed, the
impact can be even more significant:

task T T
25ms | 25ms
50ms | 40ms
100 ms | 100 ms

before after
minorcycle: A=25 A=5 40 sync.
major cycle: T=100 T =200 per cycle!

58

Kooris Example

A

0 25 100 125 150 175 200
I
[

T

59

X is Priority Scheduling

Method

e Each task is assigned a priority based on its
timing constraints.

e We verify the feasibility of the schedule using
analytical techniques.

e Tasks are executed on a priority-based
kernel.

%.,,, HOw to assign priorities?

...................

e Typically, task priorities are assigned based on
the their relative importance.

e However, different priority assignments can
lead to different processor utilization bounds.

61

oo Priority vs. importance

.................

If T2 is more important than 11 and is assigned
higher priority, the schedule may not be feasible:

U SR S S -
i J____ |
T2 -
deadline miss
a7
T1 | | * |
R T2 _ |

62

A ris Priority vs. importance

.................

But the utilization bound can be arbitrarily small:

An application can be unfeasible even
when the processor is almost empty!

deadline miss
a7
€
S T
2]=
T2 ,
€ C,
u= -+ — — 0

63

Kooris Rate Monotonic (RM)

.................

e Each task is assigned a fixed priority
proportional to its rate [Liu & Layland ‘73].

64

%*.,;,s Rate Monotonic is optimal

RM is optimal among all fixed priority
algorithms (if D, = T)):

If there exists a fixed priority assignment
which leads to a feasible schedule, then
the RM schedule is feasible.

L]

If a task set is not schedulable by RM,
then it cannot be scheduled by any fixed
priority assignment.

65

%..., Deadline Monotonic is optimal

If D, < T, then the optimal priority assignment is
given by Deadline Monotonic (DM):

oM TlJ_-J_L JL 1|
P,>P, TZLI |

™t e e e]

P,>P,

66

g N Priority Assignments

e Rate Monotonic (RM): [Optimal among FP algs}
forT=D
P, oc 1/T, (static)

e Deadline Monotonic (DM): [Optimal among FP algs}
forT<D
P. oc 1/D; (static)

e Earliest Deadline First (EDF): [Optimal among]
all alg®
P, oc 1/d;, (dynamic)

dik = rix+ Dj

%, How can we verify feasibility?

e Each task uses the processor for a fraction of

time:
C.
U =—
Ti
e Hence the total processor utilization is:
n C
U =) —
p ; Ti

e U, is a misure of the processor load

X is A necessary condition

A necessary condition for having a feasible
schedule is that U, < 1.

In fact, if U, > 1 the processor is overloaded
hence the task set cannot be schedulable.

However, there are cases in which U, =1 but
the task set is not schedulable by RM.

%*..;, An unfeasible RM schedule

U =§+ﬂ=0.944
6 9

p

0 3 6 9 12 15 18

TZ#_#.._

0 3 6 9»§ 12 15 18
deadline miss

2o is Basic results

..........

In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

(n .
under RM if Z% < n(2]/n —1)
i=1 i
3 e
under EDF if and only if Z?' <1
. i=1 1

Independent tasks

®=0 |D=T

Assumptions: {

%*..;. Utilization bound for large n

UM = n(2vn-1)

forn>wo U,— In2

k- Time: Sysierrs Laborssary

EDF

k- Time: Sysierrs Laborssary

A special case

If tasks have harmonic periods U, = 1.

T1

T2

U

p

ﬂl‘
8

J—L-L-L-.L-

4 8 12

—-J—-J

......

Schedulability region

0.83 1

The U-space

B
i=1

n
Pl
i=1

IA

75

Schedulability region

0.83

1/2 1

The U-space

4/9

76

?etz's SChedL”e

Tlm
T T >

EDF 0 3 6 9 12 15 18
| — | —
0 3 6 9 12 15 18
T h##
RM 0 3 6 9 12 15 18
T2 L_# .
0 3 6 9 v} 12 15 18
deadline miss

4., The Hyperbolic Bound

it Tirna Bysieres Laborssary

e In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

ILI(Ui +1) <2
i=1

B Schedulability region

..........

Ui The U-space
Py, <y
i=1
0.831 -
DU < n@"-1)
i=1
U2
083 1

B Schedulability region

...........

Ui The U-space
Py, <y
i=1
0.83- -
DU < n@@"-1)
i=1
n
[Twi+y < 2
U2

083 1 w

..., Response Time Analysis

1. For each task T, compute the interference
due to higher priority tasks:

I, =) C,

R, >P,

2. compute its response time as
R, = C,+ 1

3. verify whether R; < D,

R ris Computing the interference

% o m lfem m]
Til | |

0 R.

Interference of 1, on T; Ri
e = | = |Gy

in the interval [0, R;]: T,

Interference of high | = i1 Ri C

priority tasks on ;. i T_ k
k=1 k

4.,,, Computing the response time

i—1 R
= C,+). {—W @
| Ty

Iterative solution:

Ri0 = Ci
iterate until

i— (s-1)
R’ C, +Z {R w RS > Ri(s_l)

X ris Processor Demand

..........

len |] o []

t t,

The processor demand in [t,, t,] is the computation time
of those jobs started at r, > t; with deadline d, <t,:

d;<t,

g(t,t,) = ZCi

84

s Processor Demand

o | | | Lo | L]

0 L
Processor Demand in [0, L]

9(0,L) :Z”:LL+Ti—DiJ C.

= T

85

*...s Processor Demand Test

vL>0, g(O,L)< L

Question

How can we bound the number of intervals in
which the test has to be performed?

86

Kooris Example

Sl L [m |

0 2 4 6 8 10 12 14 16
g(OvL)‘ L
8 |

6

2

87

R ris Bounding complexity

e Since g(0,L) is a step function, we can check
feasibility only at deadline points.

e If tasks are synchronous and Up < 1, we can
check feasibility up to the hyperperiod H:

H = lem(T,, ..., T,)

88

B Bounding complexity

..........

e Moreover we note that: g(0,L) < G(0, L)

cou -5, (572

n Ci n ~ &
—éb?+§ﬂ mﬂ

:LU+iﬂ—QNi

89

A i Limiting L

..........

G(O,L) = LU + Zn:(Ti—Di)Ui
i=1 L

G(0, L)

N - —D.U.
L* = IZ_;(TI I) | M! L)
1-U —
T
v L>L"

0L)<GOL) <L
- 9()()L
T

90

%.,,s Processor Demand Test

.................

VLeD, g(O,L)< L

D = {d |d, < min(H, L")}

H = Ilem(T, ..., T,)

Zn:(ri B Di)Ui
L* — =l
1-U
Handling

Shared Resources

Koesis Critical sections
T Ty
globlal
wait(s) memory buffer wait(s)
X=23: write || read o .
y=5; int y; l b = y+2:
signal(s) ¢ = X+y:
signal(s)
%..;,. Blocking on a semaphore
P, > P,
Ty T, A
T4 |
Sl les| T2 [—

It seems that the maximum blocking
time for t1 is equal to the length of the
critical section of 12, but ...

%, Schedule with no conflicts

it Tirna Bysieres Laborssary

priority

Tl—h

l

To

T3h_\

%.,,. Conflict on a critical section

it Tirna Bysieres Laborssary

priority B

T

T1ﬁh"j- |

T3L_--_I

...................

X ris Priority Inversion

...................

A high priority task is blocked by a lower-priority
task a for an unbounded interval of time.

Solution

Introduce a concurrency control protocol for
accessing critical sections.

R pis Non Preemptive Protocol

e Preemption is forbidden in critical sections.

e Implementation: when a task enters a CS, its
priority is increased at the maximum value.

ADVANTAGES: simplicity

PROBLEMS: high priority tasks that do not use
the same resources may also block

R ris Conflict on a critical section

priority B

B Schedule with NPP
priority
T [o
2 T e
5 -
Pos = max{P;, ... P}
g N Problem with NPP
priority useless
T blocking
>
T2 I -—-
'3 L —

T, cannot preempt, although it could

%.,,, Highest Locker Priority

...........

A task entering a resource R, gets the
highest priority among the tasks that use R,

Implementation:
e Each task t, has a dynamic priority p, initialized to P,

e Each semaphore S, has a ceiling

C(S,) = max {P; | t; uses S, }

e When t; locks S,, p; is increased to C(S,)

e When t; unlocks S,, its priority goes back to P,

B Schedule with HLP

...........

S, C(S)=P;
S; 1 C(Sy =P,

priority

Tlgh

T [

T3 =

1, is blocked, but t; can preempt t; within its
critical section, because P, > C(S,)

X is Problem with NPP and HLP

A task is blocked when attempting to preempt,
not when accessing the resource.

T Ty 7, blocks just in case ...

rest> _— T, 1 T
TzJ:—_EL

L)
P,

— P,

%*..;s Priority Inheritance Protocol
[Sha, Rajkumar, Lehoczky, 90]

e A task increases its priority only if it blocks
other tasks.

e Atask 7, in a resource R, inherits the highest
priority among those tasks it blocks.

pi(R) = max {P, | 1}, blocked on R}

Schedule with PIP

priority

T

direct blocking
I

P, . _
__» push-through blocking
\ L e e B

Types of blocking

e Direct blocking

A task blocks on a locked semaphore

e Push-through blocking

A task blocks because a lower priority
task inherited a higher priority.

a delay caused by a lower priority task

BLOCKING:

e A task t1; can be blocked by those
semaphores used by lower priority tasks

e directly shared with T, (direct blocking)

e shared with tasks having priority higher than T,
(push-through blocking).

Theorem: t; can be blocked at most once
by each of such semaphores

Theorem: t; can be blocked at most once
by each lower priority task

Bounding blocking times

.........

e Let n; be the number of tasks with priority
less than T,

e Let m;, be the number of semaphores that
can block t;

Theorem: rt, can be blocked at most on
the duration of o; = min(n;, m,)
critical sections

?etz's EX am p I e

et Tima Sysiers Labasssary.

priority

g B3 B2 E7 BS
I x Il Y
T ExEw Nz

e 1, can be blocked once by 1, (on X, orY,) and
once by t; (on X; or W)

e T1,can be blocked once by t; (on X3, W5 or Z;)
e 15 cannot be blocked

e NOTE: 1, cannot be blocked twice on X

?etz's EX am p I e

et Tima Sysiers Labasssary.

priority
I B B2 A0 BN
Tl x Bl v
T ExEw iz N
o B, =5(Y,) + 8(Ws)
o B,=5(W,)
¢ B,=0

it Tirna Bysieres Laborssary

T B B Y B Wil xJ
T, I x B v [z
T3 M xEw [T z [

4., Chained blocking with PIP

it Tirna Bysieres Laborssary

| I83I

u

|Bl| |B2
U L .

O
m

Theorem:

7, can be blocked at most once
by each lower priority task

A pis Comparison

Syaterrs Labatasary

NPP HLP PIP
of blocking 1 1 o = min(n;,m;)
chained o no s
blocking y
deadlocks os es no
avoidance y y
pessimism very high high low
transparency yes no yes
stack sharing yes yes no

%.... Accounting for blocking times

preemption
I by HP tasks
T J_-_-
blocking by
LP tasks

Utilization test

Vi i?: n Ci_:_'Bi < i(21/i_1)

.................

I by HP tasks
T | s s

blocking by
LP tasks

preemption

Hyperbolic bound

C +B,

:

<2

..................

Response Time Analysis

T, |b|ocking- preemption]

R’

N
L

B, +C.
i—1

Bi+Ci+Z

k=1

{ R
Tk

c

iterate until

Ris > Ri(s—l)

