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Digital Control Systems
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Digital control systems usually exhibit uniform sampling intervals and delays
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Non-uniform Sampling/Delays

(\\ UC SANTA BARBARA

¥ engineering

@ Uniform sampling cannot be guaranteed (packet drops, clock synchronization, ...)
@ Different samples may experience different delays
@ Difficult to decouple continuous plant from discrete events (sampling, drops, ...)
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Course Overview ¥ engineering

Lecture #1: Modeling Framework — Hybrid Dynamical Systems
(Deterministic, Stochastic, Impulsive)

Lecture #2: Analysis of Stochastic Hybrid Systems
(Generator, Lyapunov-based Methods)

(extra material): NCS Protocol Design
(Medium Access, Transport, Routing)

Lecture #1
Modeling Framework:
Hybrid Dynamical Systems
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Lecture #1 Outline
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Deterministic Impulsive Systems (DISs)
Deterministic Hybrid Systems (DHSs)
Stochastic Hybrid Systems (SHSs)
Simulation of SHSs

SHSs Driven by Renewal Processes

Main references:

Davis, “Markov Models and Optimization” Chapman & Hall,1993
Cassandras, Lygeros, “SHSs” CRC Press 2007

Hespanha, “A Model for SHSs with Application ..."” Nonlinear Analysis 2005.
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Deterministic Impulsive Systems ¥ engineering

guard reset-maps
conditions ...
g1(z) > 07 x — ¢1(x)
continuous
dynamics go(z) > 07
g3(z) > 07

&= f(x)

T — ¢3(7) T — ¢a(x)

x(f) € R” = continuous state
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Example #1: Bouncing Ball ¥ engineering

Py g Free fall=
Collision =y
Yy

c € [0,1] = energy “reflected” at impact

Notation: given x : [0,00)—R» = piecewise continuous signal

x~ :(0,00) — R"” x~ (t) :=limz(t), Vt>0

Tt

T :[0,00) — R" T (t) == lima(t), Vt>0

Tlt
at points # where x is continuous x(z) = x~(¢) = x%(1)
By convention we will generally assume right continuity, i.e.,
z(t)=zT(t) Vt>0

x xt
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Free fall=
Collision =y
Yy

for any ¢ < 1,there are infinitely
many transitions in finite time (Zeno
p phenomena)

guard or jump condition
r1=0& 29 <07

transition

Impulsive System
(all discreteness in the
form of instantaneous Tog = —CTo
changes in the state) state reset
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Deterministic Hybrid Systems ¥ engineering

continuous o
dynamics ‘ |
ga(x) > 07
\ ga(z) > 07
T ¢3() T — ¢a() guard
conditions
T — ¢2(z)
> 07
gs(x) = 0 reset-maps

q() € Q={1.2,...} = discrete state right-continuous
z(t) € R~ = continuous state by convention
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Example #2: TCP Congestion Control ¥ engineering

transmits receives
data packets data packets

‘ —= network D =
r
\ _

packets dropped
due to congestion

congestion control = selection of the rate » at which the server transmits packets

feedback mechanism = packets are dropped by the network to indicate congestion

TCP (Reno) congestion control: packet sending rate given by

w(®) congestion window (internal state of controller)
rf) = RTT(t)  round-trip-time (from server to client and back)
* initially w is set to 1
« until first packet is dropped, w increases exponentially fast (slow-start)
» after first packet is dropped, w increases linearly  (congestion-avoidance)
* each time a drop occurs, w is divided by 2 (multiplicative decrease)
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Example #2: TCP Congestion Control ¥ engineering

“drop event’

w|—>1\

slow-start cong-avoid

. log 2 . 1
) = ) W= ——
RIT" RIT
. \/ w w
drop event w— — weg

TCP (Reno) congestion control: packet sending rate given by

w(®) congestion window (internal state of controller)
rf) = RTT(t)  round-trip-time (from server to client and back)
* initially w is set to 1
* until first packet is dropped, w increases exponentially fast (slow-start)
» after first packet is dropped, w increases linearly  (congestion-avoidance)
* each time a drop occurs, w is divided by 2 (multiplicative decrease)
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Drops by Queue Overflow ¥ engineering

queue
(temporary
data storage)

1\::@

rate < B bps

s(t) = queue size

When r exceeds B the queue fills and data is lost (drops)

S =
0 otherwise

S = Smax, T > B = drop event
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Example #2: TCP Congestion Control ¥ engineering

queue
(temporary
data storage)

rate < B bps

s(t) = queue size

le\ 523max7r>B?
s—0

slow-start cong-avoid

. log2 .1
=R ~ RIT
$=r—B s=r—B
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continuous /\
dynamics ‘ -
ga(z) > 07
g2(z) > 07
T — @y

(z) guard

conditions
T — $a(x)
gs(z) > 07 »

reset-maps

q() € Q={1.2,...} = discrete state right-continuous
z(t) € R~ = continuous state by convention
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Stochastic Hybrid Systems

continuous /\

dynamics

transition intensities
(probability of transition in
small interval (¢, t+dt])

reset-maps

q(t) € Q={12,...} = discrete state
x(t) € R” = continuous state

)\g(x)dt = probability of transition in an “elementary” interval (¢, t+dt]

J

Ae(x) = instantaneous rate of transitions per unit of time
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Stochastic Hybrid Systems

continuous /\
dynamics
)\4 (x) dt
AQ (az)dt

T — ¢3(z) = ¢a () transition intensities

(probability of transition in
small interval (¢, t+dt])

T ¢o(w)

reset-maps

/\3 (I‘)dt

Special case: When all A, are constant, transitions are controlled by a

continuous-time Markov process

A )
— > specifies g
o A4 (independently of x)
\ A2
closely related to the so called

/K Markovian Jump Systems
A3 [Costa, Fragoso, Boukas, Loparo, Lee, Dullerud)]
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Example #2.1: TCP Congestion Control Y engineering

transmits receives
data packets data packets

[ - -
—_— network Do
r

\ "= packets dropped

with probability Py,
(before queue overflow)

congestion control = selection of the rate » at which the server transmits packets

feedback mechanism = packets are dropped by the network to indicate congestion

TCP (Reno) congestion control: packet sending rate given by

w(®) congestion window (internal state of controller)
rf) = RTT(t)  round-trip-time (from server to client and back)
* initially w is set to 1
« until first packet is dropped, w increases exponentially fast (slow-start)
» after first packet is dropped, w increases linearly  (congestion-avoidance)
* each time a drop occurs, w is divided by 2 (multiplicative decrease)
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Example #2.1: TCP Congestion Control
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packets dropped
with probability p 4y,
(before queue overflow)

“drop event’

w|—>1\

slow-start cong-avoid
1

. log2 B
-~ RIT

T RTT

w
“ ” w
drop event \_/W> — W —

w

w

TCP (Reno) congestion control: packet sending rate given by

w(®) congestion window (internal state of controller)
rf) = RTT(t)  round-trip-time (from server to client and back)
* initially w is set to 1
« until first packet is dropped, w increases exponentially fast (slow-start)
» after first packet is dropped, w increases linearly  (congestion-avoidance)
* each time a drop occurs, w is divided by 2 (multiplicative decrease)
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Example #2.1: TCP Congestion Control ¥ engineering

Ddrop T dt

w|—>1\

slow-start cong-avoid
1

. log 2 _
 RIT

T RrT"

w
- Pdrop TM;_) w wWhr— —

per-packet nokts sent  pekts dropped
drop prob. per sec = per sec

w

TCP (Reno) congestion control: packet sending rate given by

w(®) congestion window (internal state of controller)
rf) = RTT(t)  round-trip-time (from server to client and back)
* initially w is set to 1
« until first packet is dropped, w increases exponentially fast (slow-start)
» after first packet is dropped, w increases linearly  (congestion-avoidance)
* each time a drop occurs, w is divided by 2 (multiplicative decrease)
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Lecture #1 Outline ¥ engineering

@ Deterministic Impulsive Systems (DISs)
@ Deterministic Hybrid Systems (DHSs)
@ Stochastic Hybrid Systems (SHSs)

@ Simulation of SHSs

@ SHSs Driven by Renewal Processes
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Stochastic Impulsive Systems

¥ engineering

reset-maps

r e ()
continuous
dynamics

&= f(x)

transition intensities
(probability of transition in
interval (¢, t+dt])

(\ UC SANTA BARBARA

Numerical Simulation of SISs ¥ engineering

here we take xp as a
1. Initialize state: given parameter

ZC(to) =X k=20

2. Draw a unit-mean exponential random
variable

E ~ exp(1)
3. Solve ODE
= f(x) z(tg) =z t>1tg
until time #4; for which

/ a0t > B

23
4. Apply the corresponding reset map
T(tht1) = Tht1 = @z (tht1))
setk=k+ 1 and go to 2.
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Numerical Simulation of SISs ¥ engineering

here we take xp as a
1. Initialize state: given parameter
z(to) =z0 k=0

2. Draw a unit-mean exponential random
variable

E ~ exp(1)
3. Solve ODE
T = f(x) l’(tk) =x t>1t

until time #x4; for which

ti41
/ AMz(t))dt > FE
Why does this algorithm lead to th
A(z) = instantaneous rate of 4. Apply the corresponding reset map

transitions per unit of time ? (tge1) = a1 = d(x™ (tge1))

setk=k+ 1 and go to 2.

Numerical Simulation of SISs
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Solve ODE
T = f(x) J}(tk) = Tk t 2 tk;

until time #x4; for which

/ M et > B

23

] ] ] ]
T t el t+dt

v

P (jump in (t,t+ dt] ‘ ti, z(tr), no jump in [tk,tD

t t+dt t
:P(/)\<E§/ A\tk,x(tk),/A<E>
t t t

k

) tk+ ” k) conditional
P(fLA<E< [N at) probabilty

P (fttk A< E ‘ tk,x(tk)> exponential

distribution
_ftt A _ftt+th
e kT —e k +d
- Y =1 —e TN 20 N (2 (t))dt
e
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Numerical Simulation of SISs

¥ engineering
Solve ODE

ii' = f(x) J}(tk) = Tk t 2 tk;
until time tx+; for which

/ M et > B

23

] ] ] ]
T t el t+dt

v

P <jump in (t,t +dt] | tx, z(t),no jump in [tm]) A20 N (@ (b))dt
P (multiple jumps in (t,t 4 dt] | tx, z(tx), no jump in [tk,t]> = ... = O(dt?)
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Numerical Simulation of SISs ¥ engineering

here we take xp as a
1. Initialize state: given parameter

ZC(to) =X k=20

2. Draw a unit-mean exponential random
variable

E ~ exp(1)

3. Solve ODE
T = f(x) l’(tk) =x t>1t

until time #,+; for which

/ a0t > B

(This algorithm 1s “exact” modulo: | te
@ errors in extracting realizations
of exponential random variables
@ numerical errors in solving ODE T(tht1) = Tht1 = @z (tht1))
@ numerical errors in “zero- set k=k + 1 and go to 2.
crossing” detection

overall very accurate...
(N J

. Apply the corresponding reset map
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Stochastic Impulsive Systems ¥ engineering

reset-maps

T ¢1 ()

)\1 (T)dt
continuous
dynamics

&= f(x)

)\2 (Hj) dt -
A3 (@)dt transition intensities
(probability of transition in

interval (¢, t+dt])

T — ¢3(7) T — ¢a(x)

Numerical Simulation of SISs

(\ UC SANTA BARBARA

A (2)dt - v+ ¢1(2) z(t)) =29 k=0

Ao (z)dt 2. Draw one independent exponential random
)\3(.’1})dt N . ..
variable (unit mean) per transition
\ E17E27E3 NeXp(l)
3. Solve ODE

x — g3(z) T P2(T)

¥ engineering

1. Initialize state:

T = f(.I) l’(tk) =x t>1t
until time #,+; for which

/ M @)t > By

tk
for some transition €".

4. Apply the corresponding reset map €
T(tht1) = Trs1 = G (27 (Thr1))

setk=k+ 1 and go to 2.
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Numerical Simulation of SISs

¥ engineering

1. Initialize state:

A (z)dt - v di (@) z(to) =x9 k=0

Ao (z)dt 2. Draw one independent exponential random
)\3 (.’L’)dt N . ..
variable (unit mean) per transition
\ E17E27E3 NeXp(l)
3. Solve ODE
2 dala) 2 02l P= i) ) =m
my = )\1(1‘) ml(tk) =0
mo = )\2(1‘) mg(tk) =0 t= tk

until time ., for which
my(te1) > Ee
for some transition €.
4. Apply the corresponding reset map €

T(tht1) = Tog1 = Ge(z™ (tht1))
setk=k+ 1 and go to 2.
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Numerical Simulation of SISs

¥ engineering

1. Initialize state:

A (2)dt - v+ ¢1(2) z(t)) =29 k=0

Ao (z)dt 2. Draw one independent exponential random
)\3 (.’L’)dt . . ..
variable (unit mean) per transition
\ E17E27E3 NeXp(l)
3. Solve ODE
2= dala) 2 02l P= i) ) =m
mq = )\1(1‘) ml(tk) =0
Under appropriate (mild) ma = Aa(z) ma(ty) =0 b2ty
assumptions this : :
procedure results in a until time #.; for which
(strong) Markov Process > B
my(tes1) > By
z(t) for some transition €.
OWever 4. Apply the corresponding reset map €

T(tht1) = Tog1 := Ge(z™ (tht1))
setk=k+ 1 and go to 2.
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Numerical Simulation of SISs ¥ engineering

Attention:
\ These systems may have issues with existence of solution due to jumps!
1
Eg. I
)\3 (.’L‘ )
x — 21 z - 2?
+
E[x] can become arbitrarily
jumping makes large in a finite interval
jumping more likely ( " .
+ probability of multiple
L — oGl jumps in short interval not
£ (stochastic Zeno) sufficiently small)
In either case, “bad things can happen” with nonzero probability.

and go o Z.

C\ UC SANTA BARBARA
W englneerlng

back to Stochastic Hybrid Systems ...

continuous /\

dynamics

v ¢3 w ~ ¢4 transition intensities
(probability of transition in
interval (t, t+dt])

reset-maps

discrete state
continuous state

q(h) € O={12,...}
x(t) € R”

For simulation purposes, we can view the SHS as a SIS with an enlarged state




back to Stochastic Hybrid Systems ...
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z — ¢1(z)
/\

T ¢3(T /K

(q,7) =

CI?»—>¢4J

(37 ¢1('CC))

)\2 (l’)dt

b

if g=2

otherwise

v englneerlng

Same algorithms can
be used to simulate the
equivalent SIS

A(z)dt ifg=1
0 otherwise
(Q7 ZIZ) = (27 ¢1 (:C))

Generalizations

(\ UC SANTA BARBARA
o englneerlng

1. Deterministic guards can also be emulated by taking limits of SHSs

Ae() := ee9(@)/e

barrier
function

Ve o0t

-1 1

g(x)

The solution for the deterministic guard is obtained as € — 0"

This provides a mechanism to regularize systems
with chattering and/or Zeno phenomena...




(\\ UC SANTA BARBARA

Example #1: Bouncing-ball

¥ engineering

y<0,9<07
[ ) g
)
Y= —cy
c € (0,1) = energy absorbed at impact
Y
The solution of this deterministic hybrid
system is only defined up to the Zeno-time
’ t
Y Zeno-time

Stochastic Bouncing-Ball

(\\ UC SANTA BARBARA

¥ engineering

Ae(y, 9)dt

Yy —cy

c € (0,1) = energy absorbed at impact

mean (blue)

95% confidence intervals (red and green)
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Generalizations

v englneerlng

A(z)dt T = ()

2. Stochastic resets can be obtained by considering multiple intensities/reset-maps
pA(z)dt T eila)
/\

- {

(1 —p)A(z)dt T ()

~

One can further generalize this to resets
governed by a continuous distribution
1(g, z, dz)

(\ UC SANTA BARBARA
o englneerlng

Generalizations

Gaussian white noise

3. Stochastic differential equations (SDE) for the continuous state can be emulated
by taking limits of SHSs

x = x—g(x)V/e = x+g(x)/e

dt —dt

The solution to the SDE is obtained as ¢ — 01
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Example #3: Estimation through network (
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state-estimator

process

& = Ax + Bw | white noise T = A#
“disturbance
x
() a(t,) — -
—-— decoder
encoder —— == == packet-switched =
network for simplicity:

« full-state available

* no measurement noise
* no quantization

* no transmission delays

encoder logic = determines when to send measurements to the network
decoder logic = determines Zow to incorporate received measurements

. . . . %) UC SANTA BARBARA
Stochastic communication logic (

¥ engineering

state-estimator

process

& = Ax + Bw | white noise T = A#
" disturbance
x
z(t)  a(t,) — -
—-— decoder
encoder —— == == packet-switched =
network for simplicity:

« full-state available

* N0 measurement noise
* no quantization

* no transmission delays

encoder logic = determines when to send measurements to the network
1. keep track of remote estimate &

2. send measurements stochastically
3. probability of sending data increases as & deviates from z

decoder logic = determines #ow to incorporate received measurements

4. upon reception of x(ty), reset &(tx) to z(tx)

[similar ideas pursued by Astrom , Tilbury, Hristu, Kumar, Basar]
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Error Dynamics ¥ engineering

process state-estimator
& = Az + B | white noise 7= Az
“disturbance
T
() a(t,) — -
- decoder
encoder —— == == packet-switched =

network for simplicity:
« full-state available
* no measurement noise
* no quantization
* no transmission delays

A

Error dynamics: e:=z — %

& prob. of sending data in [¢,t+dt) depends

A(e) on current error e

é = Ae + Bw Stochastic Impulsive System

e—0 reset error to zero

(\ UC SANTA BARBARA
¥ engineering

Lecture #1 Outline

@ Deterministic Impulsive Systems (DISs)
@ Deterministic Hybrid Systems (DHSs)
@ Stochastic Hybrid Systems (SHSs)

@ Simulation of SHSs

@ Time-triggered SHSs
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Time-triggered Stochastic Hybrid Systems (,; engineering

T ¢1()
. 13k
continuous —

dynamics
I3k+1 _
T g3 transition times
frr1 — 1.
with given distribution
T ¢2
2

13k+2
reset-maps

q(t) € Q={12,...} = discrete state
x(t) € R” = continuous state

N(t) = # of transitions before time ¢

renewal process
(iid inter-increment times)

(Also known as SHSs driven by renewal processes)
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Example #4: Networked Control System ¥ engineering

A 4

controller process

N sampling

Y1 . Y1
hold 1 fimes
t
°¥ shared —k/0

~—{hold 2 network T
process:  ip = Apxrp + Cpu controller: &¢ = Acxzc + Ceoy
y:CpﬂCp—l—Dpu ?;:CC*TC—’_DC?J
round-robin network access: L (7))
uilli )l g oa
- Pl (tk)] G2ty )
y —= N = _ -
Yo (ti ~ =
hold () gty k even
2 (8 )
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Example #4: Networked Control System

¥ engineering

A 4

controller process

N sampling

Y1 . Y1
hold 1 fimes
t
°¥ shared —k/0

7-{hold 2 network

process: ip = Apxp + Cpu controller: i = Aczc + Cog
y:Cpan—l—Dpu ?;:CC*TC—’_DC?J

p
What if the network is not available at a sample time # ?
15t wait until network becomes available

2nd gend (old) data from original sampling of continuous-time output
or
2nd gend (latest) data from current sampling of continuous-time output

= intersampling times #+; — t typically become random variables
. J

(‘\ UC SANTA BARBARA

Example #4: Networked Control System ¥ engineering

R
I
Neg

A 4

controller process

N sampling

Y1 . Y1
hold 1 fimes
t
°¥ shared —k/0

7-{hold 2 network

a(tn)| ~ alty)
Adt T = Jodd?
Tp
\/ L
T = Joven® At T myc
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Example #4: Networked Control System ¥ engineering

very unrealistic!

at best, t;,, — t;, ~ 1.1.d., constant + exponential

but then x(%) is not a Markov process...

™S shared
7-{hold 2 network

Suppose t;,; — t;, ~ i.i.d., exponentially distributed

Y2 (T
Adt T+ Joda®
\/ Tp
T — JevenT A\dt S
{m(m)} _ {w(tm} y
Go(tr) G2(ty)

C\\ UC SANTA BARBARA
o engineering

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{-)

Can we pick an intensity A(*) to obtain the desired distribution for the # ?
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Time-triggered SIS

] ] ] ]
T t te1 tHdt

v

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{-)

Can we pick an intensity A(*) to obtain the desired distribution for the # ?

Recall:

dt—0

P (jump in (¢,¢+dt] | ty,z(tx),no jump in [tk,t]) —— Ae(z(t))dt

N— __

—~—

P (t <tpp1 < t+dt ‘ tr, ¢(tg), tps1 > t) hazard rate

_F(t-l—dt—tk)—F(t—tk) dt—0_ F’(t—tk)

) dt
1— F(t—ty) 1— F(t—ty)

(\\ UC SANTA BARBARA

Time-triggered SIS

F(t = t) dt z > ¢(x)

1— F(t—ty)

¥ engineering

] ] ] ]
T t te1 tHdt

v

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{-)

Can we pick an intensity A(*) to obtain the desired distribution for the # ?

Recall:
P (jump in (¢,¢+ dt] | ty,z(tx),no jump in [tk,t]) di=0, Ae(z(t))dt
~—— —~—
P (t <tpp1 < t+dt ‘ tr, ¢(tg), tps1 > t) hazard rate

_F(t-l—dt—tk)—F(t—tk) dt—0_ F’(t—tk)

) dt
1— F(t—ty) 1— F(t—ty)
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Time-triggered SIS ¥ engineering

time since last reset

F'm o (x Sl
— F(7) T Fn 70 ‘/ //

the aggregate state (a:,r) is a Markov process

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{-)

Can we pick an intensity A(*) to obtain the desired distribution for the # ?

Recall:
P (jump in (¢,¢+dt] | ty,z(tx),no jump in [tk,t]) A=0, Ae(z(t))dt
~— g -
P (t <tpyr S t+dt | b, m(tr), thyr > t) hazard rate
_P(ttdt—t) — F(t—ts) s, Flt—te)
1—F(t—tg) 1—F(t—tg)

(\ UC SANTA BARBARA

Example #4: Networked Control System ¥ engineering

R
I
Neg

A 4

controller process

N sampling

4 times U1
e ~— S

~—{hold 2 network T

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{-)

F'(7) T+ Jodd® (t)
1—F(r ) / /
\/‘ tl t2 t3

T +— Joven® (T)
71— 0 F(T

dt
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Example #4: Networked Control System

v englneerlng

A 4

controller process

N sampling

I times U1
e ~— S

~—{hold 2 network T

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{-)

F'(T T Jodd® ©t) /4 Tp
— (7 T — 0 ' T = |:517(V]
Y
This representation allows one to
T Jevenx F'(T) p combine in the same SHS
70 — F(7) time and event triggered transitions!

Lecture #2
Analysis of Stochastic Hybrid Systems

UC SAI:ITA BARI.%ARA
F engineering
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Lecture #2 Outline

¥ engineering

@ Infinitesimal Generator and Dynkin’s Formula
@ Lyapunov-based Analysis

@ Stability of SHSs Driven by Renewal Processes

Main references:

Davis, “Markov Models and Optimization” Chapman & Hall,1993
Kushner, “Stochastic Stability and Control” Academic Press,1967
Antunes et al., ACC'09, CDC’09, ACC’10, CDC'10

(\\ UC SANTA BARBARA

ODE - Lie Derivative ¥ engineering

T = f(x) x e R"

Given scalar-valued function V : R — R

dv (z(t)) _ oV (z(t))

f(=(t))

dt ox
derivative %/—/
along solution L,V
to ODE Lie derivative of V'

Basis of “Lyapunov” formal arguments to establish boundedness and stability...

E.g., picking V(z) := ||z||?

dv(d_i(t)):g—‘;f(x)gO = V(alt) = =) < |O)]?

||22||® remains bounded along trajectories !
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ODE - Lie Derivative (,p engineering

T = f(x) x e R"

Along solutions to ODE

z(t +dt) = z(t) + @(t)dt + O(dt?)
H_/

f(z(t))

Given scalar-valued function V : R™ — R

V(a(t+dt)) = V(az(t) + fz(t))dt + O(dt2)>
N OV (x(t + dt))

Y (a(t) S/ (a(t))dt + O(d#*)
- V __
av (x(t)) _ . V(x(t+dt) = V(x(t) 8V(:E(t+dt))f(x(t)>

dt dt—0 dt ox

. . % UCSANTA BARBARA
Stochastic Impulsive System (,) engineering

Along a sample path to the SIS
z(t) + f(z(t))dt + O(dt*) no jumps in (¢, dt]
x(t +dt) =

[see below] one jump in (¢, dt]|

777 more than one jump ...
Assuming one jump at time ¢t € (¢, dt]
- _ _ 2
z”(ty) = z(t) + f(z(t)) (te —t) + O((tx — 1)?) -
O(dt) O(dt?)

99 (x(t))
ox

z(t+dt) = z(ty) + f(z(te)) (t +dt — tg) + O((t + dt — tx,)?) = ¢(x(t)) + O(dt)
O(dt) O(dt?)

continuous evolution

jump

z(tr) = d(z~ (tr)) = ¢(z(t)) +

O(dt)
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o englneerlng

Stochastic Impulsive System

Along a sample path to the SIS
z(t) + f(z(t))dt + O(dt*) no jumps in (¢, dt]
x(t 4 dt) = S ¢(z(t)) + O(dt) one jump in (¢, dt]
777 more than one jump ...

Given scalar-valued function V : R — R

x(t)) + ( (t)) f(z(t))dt + O(dt*) mo jumps in (¢, dt]
V(x(t+dt)) = Vig )) + O(dt) one jump in (¢, dt]

777 more than one jump ...

(\ UC SANTA BARBARA
o englneerlng

Stochastic Impulsive System

;

V(z(t) + Wf(x(t))dt + O(dt?) no jumps in (¢, dt|
V(z(t+dt)) = V(gb(w(t))) + O(dt) one jump in (¢, dt]
\??? more than one jump ...
(V(x(t)) + 220D £ (2(8))dt + O(di?)  w.p. 1 — A(a(t))dt
= V(gb(x(t))) + O(dt) w.p. A(z(t))dt
777 w.p. O(dt?)

\
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Stochastic Impulsive System (,) engineering

;

V(z(t)) + Wf(x(t))dt + O(dt?) no jumps in (¢, dt]
V(z(t+dt)) = V(gb(w(t))) + O(dt) one jump in (¢, dt]
\??? more than one jump ...
(V(x(t)) + 220 £ (2(8))dt + O(di?)  w.p. 1 — A(a(t))dt
= V(gb(x(t))) + O(dt) w.p. A(z(t))dt
| 777 w.p. O(dt?)
Given z(t)

E [V(az(t +dt)) | x(t)] - (V(a:(t)) + Wg;(t)) F(x(t))dt + O(dt2)> (1 . A(az(t))dt)

+V((2() ) M) dt + O(dr?)

(\\ UC SANTA BARBARA
o engineering

Stochastic Impulsive System

V(z(t) + Wf(x(t))dt + O(dt?) no jumps in (¢, dt|
V(z(t+dt)) = V(gb(w(t))) + O(dt) one jump in (¢, dt]
\??? more than one jump ...
(V(x(t)) + 220D £ (2(8))dt + O(di?)  w.p. 1 — A(a(t))dt
= V(gb(x(t))) + O(dt) w.p. A(z(t))dt
| 777 w.p. O(dt?)
Given z(t)

E [V(az(t +dt)) | a:(t)] =V (z(t) + av(gz(t)) F@(®)dt — V() Mz (t))dt

+V(6(2(0) ) M) dt + O(dr?)
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¥ engineering

Stochastic Impulsive System

E [v(x(t +dt)) — V(2(t)) | x(t)]

= lim
T=t dt—0 dt
oV (z(t))

= 2D 1) + (V(6(0)) - V(1)) A1)

(implicit assumption that terms O(d#?) do not cause trouble...

ais can be overcome by working with (bounded) stopped versions of the process)
1Verr—rtTy

WD) fa()it - v () ol

+V(6(2() ) M@ (®) dt + O(dr?)

B[V (a(t+dn) | 2(t)] =V (a(t) +

=

& UC SANTA BARBARA

Generator of a Stochastic Impulsive System ( Y engineering

A(zx)dt

Given scalar-valued function V : R"® — R x is discontinuous, but the
expected value is
differentiable

98 [V(a(0)] = E[@V)(2w)]

where

Lie derivative Reset term (absent for deterministic ODEs)

@)@) = D f(a) 1 (v (6(0) - V) M)
(extended)

generator of
the SIS




=

Generator of a Stochastic Hybrid System ( b Z?,E?ﬁ?é‘;?ﬁg

Given scalar-valued function V : QO x R™ — R
x & g are discontinuous,
but the expected value is

d differentiabl
ZE[V(a®),2()] = B[@V)(a®),2()] ferentiabie
where
oV
(LV)(g, ) ::%(q, x)f(q, ) Lie derivative
(extended)
generator of m ‘
the SHS + Z Mg, x) <V((7)g(q, r)) — Vg, T)> Reset term
(=1
+ ; trace <g(’q. x) (.)) ‘) 9(q, 1)) Diffusion term
2 Oz

(\ UC SANTA BARBARA

Example #3: Remote estimation ¥ engineering

process state-estimator
& = Az + B | white noise 7= Az
“disturbance
T
z(t)  a(t,) — -
—-— decoder
@ —— == == packet-switched =

network

Error dynamics: e :=x — 2

prob. of sending data in [¢,t+dt) depends
Ae)dt on current error e

e 0 reset error to zero

(LV)(e) ::%Z(e)Ae FAE (V) - V() +  trace (B’UQV (¢)B)

Oe?




Lecture #2 Outline

(\\ UC SANTA BARBARA

@ Infinitesimal Generator and Dynkin’s Formula
@ Lyapunov-based Analysis

@ Stability of SHSs Driven by Renewal Processes

¥ engineering

Lyapunov Analysis — ODEs

(\\ UC SANTA BARBARA

f(z)

Given scalar-valued function V : R — R

T

dv (z(t)) _ oV (z(t))

¥ engineering

rz e R"

dt ox f(x(t))

Suppose V() >0

Wl <o

ox -
Th dV (x(t
en (z(t) _ avf(x) <0 = V(z(t) <V(zg) Vt>0

dt ox

“Squeezing” V(x) between two class-K functions a1 ([|z]]) < V(z) < as(]|z]])

lz()]| < o5 ' (aa(llzol]))  VE>0

llx(1)Il can be kept arbitrarily
small by making Ilxoll small
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o engineering

Lyapunov Analysis — SISs

4B [V(e)] = B[wV) ()

Suppose {V($> >0
LV(x) <0
Pick T, K > 0 and define
. {T V(z(t)) < K,Vt € [0,T)
1st time V(az(t)) > K otherwise
. {0 V(x(t)) < K,Vt € [0,T]
1 otherwise

From Dynkin’s formula

B[V(a(r)] < B[V (@(0)] = Vixo)

\\ UC SANTA BARBARA

Lyapunov Analysis — SISs (,; engineering

9B [V(et)] = B[wV) ()]

v ¢(x)
Suppose {V($> >

Pick T, K > 0 and define
T V(z(t)) < K,Vt €[0,T]
1st time V(az(t)) > K otherwise
. {0 V(x(t)) < K,Vt € [0,T]
25 =

*

1 otherwise

From Dynkin’s formula

5 [@} < B[V (2(0))] = V(o) = KE[2"] < V(x)
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Lyapunov Analysis — SISs

4B [V(e)] = B[wV) ()

Suppose {V($> >0 vx
LV(x) <0
Pick T, K > 0 and define
{T V(z(t)) < K,Vt € [0,T)
1st time V(az(t)) > K otherwise
. {0 V(x(t)) < K,Vt € [0,T]

ES

1 otherwise

From Dynkin’s formula

B[V(a(r)] < B[V (@(0)] = Vi)

o = KE[Z*] < V(xp)
ZV(x(m*) + (1 =2V (x(r")) = 2*K |
%O—J P (V (x(t)) ever becomes > K)

(\\ UC SANTA BARBARA
o engineering

Lyapunov Stability in Probability

V(l’o)
K

Viz)>0
{ () <0 Ve = P (V(as(t)) ever becomes > K) <

“Squeezing” V(x) between two class-K functions ar(f|z]]) < V(x) < as(||z|])

as([[zoll)

> <
P <||as(t)|| ever becomes > M) S e (1)

Lyapunov stability
in probability

Probability of llx(#)Il exceeding any given bound M,
can be made arbitrarily small by making llxoll small
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Almost Sure Asymptotic Stability

Suppose

{al(HxH) < V(z) < ax(||]])
LV (z) < —as(||=]])

Then
as(||lxoll) almost sure (a.s.)

P (a(0) eve becomes > ) < 22(101) ol
|(¢)|| ever becomes > = a1 (M) asymptotic stability

P (z(t) - 0) =1

Proof also follows from Dynkin’s formula

(\\ UC SANTA BARBARA
o engineering

Almost Sure Asymptotic Stability

Suppose

{al(uxm < V(z) < ax(||z])
LV (z) < —as(||=]])

Then
as(||lxoll) almost sure (a.s.)

P ({0 ever becomes > ) < 201D ol
|(¢)|| ever becomes > = "o (M) asymptotic stability

P (z(t) - 0) =1

Stability in probability & a.s. asymptotic stability are sample-path properties
(bound the probabilities of ill-behaved paths)
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Ensemble Notions of Stability

Suppose {V () >

Integrating Dynkin’s formula

> stochastic stability
/ E {W (x(t))} dt < o0 (mean square if
0 W(x)=IIxl12)

\\ UC SANTA BARBARA

Ensemble Notions of Stability (,; engineering

Suppose V(z) > W(z) >0
LV(x) < —puV +c

From Dynkin’s formula

d

~E [V(x(t))} < —uE [V(x(t))] te

= E [W(a:(t))] <E [V(:p(t))} < e MV (z0) +£
exponential stability
(mean square if

W(r)=llxll? )
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Example #3: Remote estimation ¥ engineering

process state-estimator
& = Az + B | white noise 7= Az
“disturbance
T
() a(t,) — -
- decoder
encoder —— == == packet-switched =

network

Error dynamics: e :=z — 2

prob. of sending data in [¢,t+dt) depends
Ae)dt on current error e

reset error to zero

(LV)(e) ;:%‘G/(e)Ae A (VO - V() + i trace <B(())6‘ (¢)B)

(\ UC SANTA BARBARA

Lyapunov-based stability analysis ¥ engineering

error dynamics
in remote estimation /\(e)dz‘

2nd moment of the error:
/
Vie)=e'Pe = (LV)(e) = e’[(A - @I) P+ P( - @I)}e + trace B'PB

For constant rate: A(e) =y

/
A—%I Hurwitz = 3pu>0,P>1: (A—%I) P+P<A—%I> < _uP
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Lyapunov-based stability analysis ¥ engineering

error dynamics
in remote estimation /\(e)dz‘

2nd moment of the error:

Vie)=e'Pe = (LV)(e) = e’[(A - @I)/P + P( - @I)}e + trace B'PB

For constant rate: A(e) =y

/
A—%I Hurwitz = 3pu>0,P>1: (A—%I) P+P<A—%I> < _uP

= E[lle®)|?] < e *eyPeg

Vie) > llef* >0 N trace B'PB
LV (e) < —uV + trace B'PB L

(\ UC SANTA BARBARA

Lyapunov-based stability analysis ¥ engineering

error dynamics
in remote estimation /\(e)dz‘

2nd moment of the error:
/
Vie)=e'Pe = (LV)(e) = e’[(A - @I) P+ P(A - @I)}e + trace B'PB

For radially unbounded rate: A(e)

Vie)=|e|? = (LV)(e)+ uV =2¢ Ae+ plle||* — A(e)|le]|* + trace B’PB
— _

YT

as |le]| — oo
N— —
—
Vi, must be upper bounded by some ¢ < 0o
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Lyapunov-based stability analysis

¥ engineering

error dynamics
in remote estimation /\(e)dz‘

2nd moment of the error:

/
Vie)=e'Pe = (LV)(e) = e’[(A - @I) P+ P( - @I)]e + trace B'PB
For radially unbounded rate: A(e)

Vie)=e|?* = Vu>03c<oo: (LV)(e)+uV <c

> 2 > Mean-square exp.
Vie) 2 [|lz[I* = 0 = [He(t)H } e Hte! oPeqg + © stability, regardless of
LV(e) < —uV +c I how unstable A is

(true for every moment)

(\ UC SANTA BARBARA

Lyapunov-based stability analysis

¥ engineering

error dynamics
in remote estimation /\(e)dz‘

For constant rate: A(e) =y (exp. distributed inter-jump times)

1. E[e] =0 if and only if y > R[A(A)] getting more moments bounded
2. E[llelm] bounded if and only if y >m R[M(A)] ~ reauires higher comm. rates

For radially unbounded rate: A(e) (reactive transmissions)
Moreover, one can achieve the same E[ llell2 ] with

5. E — 0 1
[e] (always) less communication than with a constant rate or
6. E[llell™] bounded v'm periodic transmissions...




Lecture #2 Outline
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¥ engineering

@ Infinitesimal Generator and Dynkin’s Formula
@ Lyapunov-based Analysis

@ Stability of SHSs Driven by Renewal Processes

(\\ UC SANTA BARBARA

Time-triggered Linear SIS

o )
tk z— Jx (7) dt T Jz

¥ engineering

tpe1 — tp ~ 1i1.d., with cumulative distribution function F{-)
Defining zj, := HT(tk) state at jump times Tpi1 = JeA(tkH—tk)xk

continuous

reset .
evolution
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Time-triggered Linear SIS

o )
tk z— Jx (7) dt T Jz

¥ engineering

tpe1 — t ~ 11.d., with cumulative distribution function F{-)

Defining zy, := HT(tk) state at jump times Tpi1 = JeA(tkH—tk)xk
reéet continuous
evolution

For a given symmetric matrix P

Elz), 1 Prpyr |z = E [x;eA/(t’““_t’“)J'PJeA(t’““_t"’)xk | xk}

=1, E [eA/(t’““*t’“)J’PJeA(t’““*t’“)]:ck
N— __/

Y

expectation with respect t;,; —

(i.i.d., with cumulative distribution function F)

(\\ UC SANTA BARBARA

Time-triggered Linear SIS

o )
tk z— Jx (7) dt T Jz

¥ engineering

tpe1 — tp ~ 1i1.d., with cumulative distribution function F{-)

Defining zj, := HT(tk) state at jump times Tpi1 = JeA(tkH—tk)xk
reéet continuous
evolution

For a given symmetric matrix P
Elz) Py | ] = E [:L';eAl(t’““_tk)PeA(tk+1_tk)xk | xk]
= xfk E [eA/(t’@“_tk)PeA(tk“_tk)} Tk
Suppose
Er(s) {eA/SPeAS} <AP,y<1 = Ea), 1 Pryi1] < vyE[x), Pyl
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Time-triggered Linear SIS ¥ engineering

Er(r) | ) v Jx

tk ( )
If there exists T+ 0
P>0, Epgy [eA’SPeAS] <P >
then
klim |zk]l =0 (exponentially fast)
—00
Defining 4 what about x(f) between jumps?
o J
reset contlnulous
evolution

For a given symmetric matrix P
E[z) 1 Prpy1 | 2] = E [*r;ceAl(tk“_tk)PeA(tkH_tk)xk | wk]
= xfk E [eA/(t’@“_tk)PeA(tk“_tk)} Tk
Suppose
Er(s) {eA/SPeAS} <AP,y<1 = Ea}, 1 Pryi1] < vyE[x), Pyl

(\\ UC SANTA BARBARA

Time-triggered Linear SIS

o )
tk z— Jx (7) dt T Jz

¥ engineering

tpe1 — tp ~ 1i1.d., with cumulative distribution function F{-)

Theorem:

o0
system is mean-square stochastically stable, i.e., / Efl|l(t)]?)dt < oo
0

() LMion P, ., .,
P> 0: By [T PJeM | — P <0
S
Ers) [ / 6A/t€Atdt} < o0 and or spectral radius condition
0 on n2x n2 matrix
expected value a( Ep(s) [eA sJ' @ et SJ’D <1

w.r.t. inter-jump times
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Time-triggered Linear SIS

¥ engineering

o )
tk z— Jx (7) dt T Jz

tpe1 — t ~ 11.d., with cumulative distribution function F{-)

Theorem:

Q@ P>0,Epgy [GA SPGAS] <P mean-square stochastic stability
& EF(S)[eA’SeAS]zf A3 (ds) < 00 / B[||2(8)||2]dt < oo
0 0

Q@ P>0,Epg [eA/SPeAS] <P mean-square asymptotic stability
: A's As(q _ — : 21 _
& Jim "M (1= () =0 & Jim E[lo(0)]?

A's As
@ P> O’EF(S) [e Pe ] <P mean-square exponential stability

& lim eA%et (1 - F(s)) P=""0 = lim Efa(t)]|?]

exp. | fast

(\ UC SANTA BARBARA

Time-triggered Linear SIS

¥ engineering

( )
All 1 . :
f stability notions require v Jo
" klim |lzk|| =0 exponentially fast T 0
— 00
| the conditions essentially only differ on the requirements
on the tail of distribution
t 1-— F(S) = P(tk+1 — T > 8)
(S J
Theorem:
Q@ P>0,Epgy [GA SPGAS] <P mean-square stochastic stability
& Epy[e?*et] = / A3 (ds) < 00 < / B[||2(8)||2]dt < oo
0 0
Q P>0,Epg [eA/SPeAS] <P mean-square asymptotic stability
: A's As(q1 _ — : 21 _
& lim /% (1-F(s) =0 &  lim E[2(0)|?

A's As
@ P> O’EF(S) [e Pe ] <P mean-square exponential stability

& lim ¥t (1 F(s)) “P=0 o lim EB|z(t)|?

exp. | fast
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Example #4: Networked Control System ¥ engineering

R
I
Neg

A 4

controller process

N sampling

Y1 . Y1
hold 1 fimes
t
°¥ shared —k/0

7-{hold 2 network

Suppose t;,; — t; ~ i.i.d., with cumulative distribution function F{)

F(7) g T Joda® T(t) zp
1*F(T) 71— 0 T = |:.Z'C’]
\/ tl t2 t3 f
/
T — Joven® F (T) di
70 1-— F(T)

Previous results (extended to SHSs) provide nec. & suff. stability conditions when process and controller are linear

(\\ UC SANTA BARBARA

Time-triggered Linear SIS

F/
Ly - z— Jx 7(7) dt T Jz

1— F(T1
(7) i A T 0

¥ engineering

7T=1
tpe1 — tp ~ 1i1.d., with cumulative distribution function F{-)

Theorem:

system is mean exponentially stable,i.e., E[|z(t)||*] < ce”*||=(0)||*, ¥¢t>0

)
Lyapunov-like function
dP(7) such that defining V(z,7) := 2’ P(1)z quadratic on z for fixed ©

el < P(1) <eol =V is positive definite
(LV)(z,7) < —€V(z,T) = % E[V(z,7)] < —€eE[V(z,7)]
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Time-triggered Linear SIS

¥ engineering

‘ _ x— Jx
lk Motivates the use of Lyapunov functions of the form

Vi, ) :=(1)W(z)

T 0

for nonlinear systems.

tpe1 — t ~ 11.d., with cumulative distribution function F{-)

Theorem:

system is mean exponentially stable,i.e., E[|z(t)||*] < ce”*||=(0)||*, ¥¢t>0

)
Lyapunov-like function
dP(7) such that defining V(z,7) := 2’ P(1)z quadratic on z for fixed ©

el < P(1) <eol =V is positive definite
(LV)(z,7) < —€V(z,T) = % E[V(z,7)] < —€eE[V(z,7)]

NCS Protocol Design

Supplemental material

B, UC SANTA BARBARA
W’ engineering
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Network protocols & Control laws ¥ engineering

network view: control view:

application [€ > application
transport ¢ > transport controller process
network > network |7 Sk —‘
datalink (€ > data link | delay
physical < > physical

This lecture: Co-design of network protocols and control algorithms

1. Characterize key parameters that determine the stability/performance of
a networked controls system

2. Construct protocols that directly take these parameters into
considerations

[llustrative examples:

e data link layer: medium access control

* transport layer: error correction (& flow control)
* network layer: routing

(\ UC SANTA BARBARA

Control Area Network

¥ engineering

@ serial communication, wired bus standard
@ designed for automation systems: passenger cars, trucks, boats, spacecrafts, printers
@ short messages for time critical applications

@ collision-free, priority-based medium access:
@ highest priority message gains access to network
@ lower priority messages back off and wait

Message Frame
¢ »
Bus Idle priority field Control Data Field CRCField | ACK| EOF | Int| Busldie
—p— < < >« b > <4—p—
11-Bit Identifier ri|r0f DLC Data (0-8 Bytes) 15 Bits J |
SOF RTR Delimiter ~ Delimiter

Slot




Message scheduling - does priority matter?

Active suspension model
constant sampling = 2 ms

\J'les,r}".\s,ug Ful

¥ engineering

(‘\ UC SANTA BARBARA

Mt zuf
L
SKuy
j zrat
F‘ 10
8
6
% 4
¥ £
ZKun £
. Rear-right H N
Front-right sensor /actuator 2 4
sensor /actuator
N
VARG :
" Controller . d
G is
CAN node 1234567
network
priorities 11123456 7 access
N N A riorities
< 1. A G priorites 2 | 71 2 3 4 5 6 P
O \/ @, OO Vv QO
Front-left Heave position Roll and pitch Rear-left
sensor /actuator sensor angle sensor sensor /actuator

Ben Gaid, Cela,Kocik

Digital Control Systems

(\ UC SANTA BARBARA

¥ engineering

Digital control systems usually exhibit uniform sampling intervals and delays

/
\

ﬁhh\
Sy Sp S3 84

&—xh_q’h_> ......... \\ time
182 53 % \iL(t) y(t)
H Plant S
Sk+1— Sk = h
Hold (D/A) Sampler (A/D)
Controller
uk yk
/‘t \\
@
/ \ * e,
® _ h |h |h
Lh L
81 83 83 84 S1 Sy 83 84 time




Non-uniform Sampling/Delays

,\\ UC SANTA BARBARA
¥ engineering

@ Uniform sampling cannot be guaranteed (packet drops, clock synchronization, ...)
@ Different samples may experience different delays
@ Difficult to decouple continuous plant from discrete events (sampling, drops, ...)

Front-right se:;ﬁ?gcigbattor
sensor /actuator
Q A ANNG®
N\ Controller N
1
Netwolll
|
[ [ [
| Node 4 ‘ | Node 2 ‘ [ Node 3 ‘ L
//,,, = ’ \ % \\\
o VvV O OO0 VvV O
L I— Front-left Heave position Roll and pitch Rear-left
sensor /actuator sensor angle sensor sensor /actuator
T T2 i L
<> <> :
84 Sp  S3 U(t y(t
H " Plant S “ fime
S4 Sy S3 84
variable ’ Network ‘ packet drops
delays ( o
Controller >
T U Yk
5 s3 84 S1 83 84

Variable Delay Can Lead to Instability

(\ UC SANTA BARBARA

¥ engineering

u Jur inertia of motor

Motor

inertia of roller pair

Upper pinch X,

| —
Lower pinch @

n: trans. ratio between motor and roller
Xs: sheet position
u: motor torque

‘‘‘‘‘

T = .6ms
0.1 0.2 0.3 04 0.5

Sk
z(t) x(t x(sg)
H o i = Az + Bu O
Sk+1 — Sk = 1ms
delay 75 |«
variable delay
002

'~0.01F

T1, T2y Ty«
1

I 1

0 0.1 02 0.3 0.4 0.5

-0.02

Cloosterman and van de Wouw (Eindhoven University)

just variable sampling can lead to instability (even without drops)
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Systems With Delays

¥ engineering

Feedback loop with fixed delay
dz(t)
dit

= Az(t) + Bu(t) u(t) = Ka(t - 1)

(fixed) delay in
measuring x(t)

Feedback loop with variable delay

dz(t)
dt

= Ax(t) + Bu(t) u(t) = Kx({— ;(t))

time-\}'arying delay

(\ UC SANTA BARBARA

Classical Analysis ¥ engineering

Feedback loop with fixed delay

dzit) = Az(t) + Bu(t) u(t) = Kz(t— 1) sX(s) = (A+ BKe 7*)X(s)
time domain \/7 frequency domain
time domain

(Laplace transform)

poles of the system = {5 € C: det (sI — (4 + BKe ™)) =0}

stability < poles with negative real part
(algebraic condition!)

Feedback loop with variable delay

dz(t)
dt

frequency domain analysis

does not lead to simple
= Aw() + Bult) u(t) = Ko (t B .@T<t)> - algebraic conditionE!

time-\}'arying delay
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Classical Analysis

¥ engineering

Feedback loop with fixed delay
dz(t)

- = Az(t) + Bu(t) u(t) = Ka(t—7) sX(s) = (A+ BKe 7°)X(s)
time domain ~— 7 frequency domain
time domain

(Laplace transform)

poles of the s=etam— A ==Y
Lyapunov-based tools allow us to design controllers for
NCSs that maintain performance under

* variable delays

* variable sampling rate

* network drops, etc.

J
Feedback loop with variable delay . _
a(t) frequency domain analysis
z(t does not lead to simple
= Ax(t Bu(t t)=Kzx(t—r71(t
gt~ AsO+Bu) u®)=Ka(t-1() > T ieic conditons
time-\}'arying delay

(\ UC SANTA BARBARA

Lyapunov-based Analysis

¥ engineering

Feedback loop with variable delay

dz_g) = Az(t) + Bu(t) u(t) = Kz(t - 1(t))

time-\}'arying delay

Lyapunov-based analysis

dV(z) 0V(x)d=z(t)
dt Oz dt

V(x) = || ...<0 = stability!

* this “simplest” Lyapunov function is unlikely to “work,” but ...

* one can use numerical optimization techniques to find appropriate functions
(actually functionals)

* stability conditions appear as feasibility problems that can be solved numerically
very efficiently

* to apply these methods we need to find appropriate model for NCSs with delays...
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Delay Impulsive Systems

¥ engineering

Single-channel NCS th sampling fime
Sk
z(t) x(t z(sg)
H » &+ = Az + Bu ( ){/ & a4
delay 7, |e . A ”
k-th update time v \ k / k+1 Sk+2
tk *= skt Tk variable delay =R lopn)
z
—
Tk Tk+1
<—> <>
123 lgt1 thy2
T Az + Bz
deterministic delayed M = [ 0 ] ; t# tg,Vk €N
impulsive system B
S ) 2 (i)
time driven (lk) | kL t=tg,Vk €N
( ) [Z(tk) z(ty — 1) k
H_/
Sk = (t) == Ilimz(7r)
Tt

(\ UC SANTA BARBARA

Stability of Delay Impulsive Systems ¥ engineering

Consider delay impulsive system
z = fr(z,t), t # tg,Vk € N,
r(tpg1) = gp(x™ (tpg1), 2(thg1 — 7))  t=1t,VkeN
System is GUES if there exists a Lyapunov functional
v C’([—Ar, 0],R") x Rt — Rt

such that state z truncated to the last  time units

—
@ dls(0) < V(6.1) S dals(O) + &2 [ 16(s)'ds vp e O([—r,00), ¢ € RF
(b)y AV (w,t)

B b
. S —dale() ) t#ty, Vk €N
c . " A
V t) <IlimV t T —
(xtka k:) = ity (x¢,1) \\\ t=t,,VkeN
for d17d27527d37b > 0, » =

t bt t

N|
state z truncated to the last r time units

@ Extended version of Lyapunov-Krasovskii Theorem for delayed systems with jumps.
@ Lead to LMIs for linear systems
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Stability of Single-Channel NCSs ( ) i

¥ engineering

Based on previous theorem and an

H |z = Az 4+ Bu —’/
appropriate choice of functional ... ‘ \
@ There exists a set of pairs (Pmax, Tmax) '

delay 7

pPmax

Tmax
such that
Sk+1 — Sk < Pmax exponential stability
VEeN =
0 < 7, < Tmax

of the closed loop

@ We find the stability region by solving Linear Matrix Inequalities (LMIs)

t "t
Vi=a'Pe+ /t (pmax — t + )i (s) Ry (s)ds + /t (omax — t + )i’ (s) Ro@(s)ds + - - -
Jt—p Jt—o

p(t) =1t — s, O'(t) =t—t tk§t<tk+1...

Stability of Multi-Channel NCSs (\ engineering

¥ engineering

plant1 — ] | plant2 |
connection 1 ’

[ Network

controller1| | controller2 &

kth sampling time of channel i
kth update time of channel i

@ There exists a set of pairs (Pimax, Ti max)

S.k . .
th = s} + 7}

x
£ Vie{1,---,m}
such that ——
32+1 — 5% < pimaxs
delay = 7} = bl + CL < Timax exponential stability

ransmission + of all closed loops

blocking propagation delay

delay
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Stability of Multi-Channel NCSs

:;P ] | plant2 ]

[ Network ]
controller1| | controller2 &

kth sampling time of channel i
kth update time of channel i

¥ engineering

connection 1

1
5k . .
th = s} + 7}

@ There exists a set of pairs (Pimax, Ti max)

Pimax

Vie{1,---,m)

such that

Timax
Sh+1 — Sk < Pimax;
exponential stability

delay= ¢ =pt +C < 7;
y= 7= b+ Cf < Timax of all closed loops

transmission +

blocking " propagation delay

delay
@ These inequalities define deadlines for transmission delivery
(to be used, e.g., by Earliest Deadline First — EDF — scheduling)

@ Blocking delay depends on priority assignment

. %) UCSANTA BARBARA
Stable EDF schedullng (;) engineering
Suppose: do not sample too fast
Q /’iminSsﬁﬁ-l_sz;ﬁpimakaGN,ie{1a"'7n}
n 01
@ <1 f .
24 Pimin astest sample does not exceed capacity
e X Lmﬁ'C; +maxC; <t Vtes

1 Pimin

and every pair (p;max, Timax) belongs to the shaded region

Vie{l,---,m}

Pimax

. T
can be implemented, vmax

e.g., using CAN priorities

Then the following holds for EDF scheduling

i = b, + O < Timax exponential stability
of all closed loops

" d—; )
s=U {Timax + hpimin,h =0,1,--- ,Lﬂj},d = ... |zTi=..
i=1 Pimin
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Example: motion control system for sheet control ( ¥ engineering

Jur inertia of motor

inertia of roller pair H =z = Az + Bu |
/ Sk4+1 — Sk = 1ms
P b delay 7%

X;
] —>
Lower pinch @

u
Motor

Upper pinch

_as _fo 1 o
| m—{} A_{O o}’ B_—Mx{so 11.8]
n: trans. ratio between motor and roller
X, sheet position nrRr

u: motor torque " m Controller gain

o

Position and velocity measurements are sent to an ECU through a CAN network
ECU computes control commands and applies to motors directly, which takes 0./ms
Transmission time is C;= I ms (8 bytes, 64 kbit/s)

Closed-loop system remains stable for any constant sampling smaller than 48 ms
when delay=0

©O© ©

© ©

= we choose sampling interval =12 ms

(\ UC SANTA BARBARA

Example (continued) ¥ engineering

How many motors can be controlled?

@ Ad-hoc approach: a conservative designer n=6 so bus load 50%
an aggressive designer n=1// so bus load just below 100% (91.7%)

Our approach: -
@ By solving the LMIs we find admissible set el \\\

of sampling-delays. For sampling=1/2 ms,

0012} \
max variable delay=10ms -

0.008

0.006

max delay (T

@ By testing scheduling condition with

0.004

Ti:]2ms, Dl:]0-01:99ms, Ci:]ms 0002 o
we conclude n=9 (bus load 75%) % T T Y TR TR Y T 8
max intersampling time
@ By following the proposed method we avoid (Pra

conservative choices and ‘unsafe’ choices
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Network protocols & Control laws ¥ engineering

network view: control view:
application [€ > application
transport ¢ > transport controller process
network > network |7 Sk —‘
datalink (€ > data link | delay
physical < > physical

This lecture: Co-design of network protocols and control algorithms

1. Characterize key parameters that determine the stability/performance of
a networked controls system

2. Construct protocols that directly take these parameters into
considerations

[llustrative examples:

¢ data link layer: medium access control

* transport layer: error correction (& flow control)
* network layer: routing

(\\ UC SANTA BARBARA

Transport layer protocols @ engineering

Most common (general purpose) protocols:

high drop rates can lead
to poor performance and

UDP eventually instability

* no attempt at error correction

TCP
* error correction
° all packets sent should be acknowledged by receiver
¢ lack of acknowledgement of packet n leads to retransmission of same packet
after packet n + 3 (triple duplicate ack mechanism)

delayed retransmissions
are essentially useless;
too much overhead in ack
every packet
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[lustrative 1-D problem

¥ engineering

dead-beat controller disc.-time process (\;\{Qtlhibn:r:iz
shared
network

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ z(k)? ] <oo) if and only if

< 1
P ap
Intuition: ignoring the disturbance d
0 with probability 1 — :
b+ 12 =4, o, PR ST Bla(k +1)2) = plaf? Ela(k)?
la|*z(k)* with probability p

(\\ UC SANTA BARBARA

[Mlustrative 1-D problem ¥ engineering

dead-beat controller disc.-time process (\ﬁgtlherbn;riz
z(k)
shared
network

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ z(k)? ] <oo) if and only if

1

< —_
P=Tap

But what if |a|>1 and the probability of drop is larger than this bound?
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Redundant transmissions ¥ engineering

discti | white noise
isc.-time process disturbance

"ot =az+u+d

dead-beat controller

U = —ax

(k)

shared
network

drops packets (iid)
with probability p

redundant transmissions = at each time step one sends /N copies of x(k) through
independent channels (time, frequency, or spatial

diversity), each with drop probability p

The closed-loop is mean-square stable (i.e., E[ z(k)? ] <oo) if and only if

N 1
p < o = p< =
lal |a| any drop probability can be
accommodated by choosing N
but transmission rate is N times larger sufficiently large

(\ UC SANTA BARBARA
¥ engineering

A simple “error-correction” protocol

discti | white noise
isc.-time process disturbance

st =az+u+d

dead-beat controller

U = —ax

(k)

shared

network this result assumes no
drops in nacks

drops packets (iid)
with probability p

1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter generally sends one packet at each sampling time, however...
3.upon reception of nack, transmitter sends two copies of the following packet

The closed-loop is mean-square stable (i.e., E[ z(k)? ] <oo) if and only if

1 similar bound as if
p< ? always sending two packets

but average transmission rate is only /+O(p) times larger
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Even better... ¥ engineering

dead-beat controller disc.-time process (\ﬁgtlherbn;r:iz
u = —axr 'x—’_:ax‘*'u_'—d
z(k)
shared
drops packets (iid) network this result assumes no
with probability p drops in nacks

Pick a function v : N — N, with v(0) = 1

1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter keeps track of number /(k) of consecutive drops prior to time k

* transmitter sends v(/(k)) copies of each packet

For every p, a, and N, one can find a function v : N — N such thtatb'l' t
* closed-loop is mean-square stable (i.e., E[ z(k)? ] < 00) Stabilizes any system

* average transmission rate is only /+O(pN) times larger arbitrarily small increase in

* requires at least N independent channels N the transmission rate
all but one channel are rarely utilized

(\\ UC SANTA BARBARA

Even better...

¥ engineering

, - white noise
dead-beat controller ‘ disc.-time process | disturbance
— el =L b B s |
* can stabilize any system for any drop probability
e with arbitrarily small increase in the transmission rate
no (completely) free lunch... E[ z(k)? ] will be large
ult assumes no
E[ 2(k)? ] ps in nacks
Pick a ful ,
1.when : achievable nack)
2.transm me k
* transnj
For ever 1 E[ v(k) ] t
o ny system
« closed (transmission rate) y sy
* average transmission rate is only /+O(pY) times larger arbitrarly small increase in

e requires at least N independent channels the transmission rate

all but one channel are rarely utilized
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Optimal “error-correction” protocols Y engineering

white noise
cert. equiv. controller n-dim. process disturbance
u—K# _>$+:A$—|—BU—|—CZ
shared z(k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p

choose v(k) = number of copies of x(k) to send at time instant &k

to minimize

o (e[S o) (e £ )

k=0
_/ . J
~—
state estimation error transmission rate
(performance) (communication)

average-cost optimal control of a Markov process on R”

(\ UC SANTA BARBARA

Optimal “error-correction” protocols Y engineering

white noise
cert. equiv. controller n-dim. process disturbance
u—=K# _>$+:A$—|—BU—|—CZ
shared z(k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p

(e o - s0) o (b ]

Theorem:

 optimal v(k) is generated by a memoryless policy of the form
transmitter must construct a state

v(k) = 7" (x(k) — 2(k)) estimate to determine optimal v(k)
* optimal policy mt* can be computed using dynamic programming

and value-iteration , -
computationally difficult for large n
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Example ¥ engineering

| . . , zt=2r+u+w
6.5 send just one packet every time - w ~ N(0,3)

p=.15

optimal protocol using

>9l at most 3 independent channels
5l (different choices of A)

454
4+

3.5¢

A 1 A 1.‘
1 1.5 2 25 3

average communication rate

(\ UC SANTA BARBARA
¥ engineering

Optimal “simplified” protocols

white noise
cert. equiv. controller n-dim. process disturbance
u—=K# _>$+:A$—|—BU—|—CZ
shared z(k)
~ network (generalizable to
drops packets (iid) output-feedback)

with probability p

choose v(k) = number of copies of x(k) to send at time instant &k

to minimize

1 N-1 1 N-1
. A 2
Jim_ (N E [ 3 |latk) — & (k)| D + A(N E [ 3 U(k:)])
k=0 k=0
— _/ . .
Ve
state estimation error transmission rate
(performance) (communication)

but transmitter must choose v(k) based only on # of consecutive drops (from nacks)
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Optimal “simplified” protocols

¥ engineering

white noise
cert. equiv. controller n-dim. process / disturbance
u—K# _>$+:A$—|—BU—|—CZ
shared z(k)
~ network (generalizable to
drops packets (iid) output-feedback)
with probability p
1 N—1
i, (%2 ) (e[ X0
Jim Z Jot) ~ 2] ) + A (5 B[ X o)
k=0
Theorem:
*optimal v(k) is generated by a memoryless policy of the form
v(k) =7 (E(k)) transmitter only needs to keep track of

((k) = # of consecutive drops (from nacks)
* optimal policy m* can be computed using dynamic programming

and value-iteration computationally much easier
(optimization on countable-state

MDP with size independent of )

('\\ UC SAI:ITA BARI_%ARA

Example ¥ engineering
| . . ' =2r+u+tw

6.5 send just one packet every time : w ~ N(0,3)

simplified protocol using
5.5] at most 3 independent channels
(different choices of A)

3t 4 . . . ﬂ

1 1.5 2 25

average communlcanon rate
optimal protocol using
at most 3 independent channels
(different choices of A)
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Example ¥ engineering
| . . ' T =2r+u+w

6.5} send just one packet every time | w ~ N(0,3)

p=.15

simplified protocol using

5.5] at most 3 independent channels 1
(different choices of A)

% stochastic protocol using
o 1 at most 3 independent channels
ol (different choices of \)

3.5¢

K 1.5 2 25 3
‘ average communication rate
optimal protocol using
at most 3 independent channels

(different choices of A)

(\ UC SANTA BARBARA
¥ engineering

Network protocols & Control laws

network view: control view:

application [€ > application
transport ¢ > transport controller process
network > network |7 Sk —‘
datalink (€ > data link | delay
physical < > physical

This lecture: Co-design of network protocols and control algorithms

1. Characterize key parameters that determine the stability/performance of
a networked controls system

2. Construct protocols that directly take these parameters into
considerations

[llustrative examples:

¢ data link layer: medium access control

* transport layer: error correction (& flow control)
* network layer: routing
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Problem formulation ¥ engineering

\/

Estimation of a process across a network

Multi-hop/multi-path communication between sensor and estimator

(\ UC SANTA BARBARA

Communication Channel Model ¥ engineering

1 { 1 -'“o‘
23| —> "
6 6 J
“46 L
e
Packet Erasure Model
1 b
.
23| —N\> Lov?°
6 00“‘3‘ L ¢ J

1. Enough quantization bits

2. No corruption of data
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System Model W engineering

yr = Czy, + vy,

* Packet Erasure Channels

* Network with Arbitrary Topology

: Minimum Mean Squared Error
Estimator .
Estimator

Minimize, at every time step, the mean squared cost E [(zj, — &) (z1 — &)

( %\ UC SANTA BARBARA

The Network Case W engineering

Process Sensor Network Estimator

If the sensor (and every intermediate node) simply transmits measurements,
the network is equivalent to a single channel with

equivalent drop probability = 1 — “reliability of the network”

For a series combination of n links each with drop probability p, the ‘equivalent’ drop
probability is 1 — (1 . p)n A np (p < 1)
Forn =5, p = 5%, the ‘equivalent’ drop probability is 23%.

Can we do better ?
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In This Lecture

W engineering

Process Sensor Estimator

* Theme: Use (limited) memory and processing power at the intermediate
nodes to obtain better performance.

*If the nodes follow a recursive algorithm, optimal performance is achieved.

« Stability conditions can be checked simply.

( %\ UC SANTA BARBARA

Is it Feasible? W engineering

Telos wireless network modules from Moteiv
1. Microcontroller: 8 MHz Texas Instrument MSP430

2. Program memory: 62K
3. Flash memory: 256K

MVWT-II vehicles at Caltech
1. Microcontroller: 206 MHz Zaurus PDA
2. Flash memory: 16M

Power grid

Ample processing and memory capabilities

Constraint: memory and computation required should not increase with time.
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Information Processing Algorithm W engineering

e I

Every node keeps

1. an estimate of current state value based on all data it has received so far &

2. a time-stamp of the latest measurement used to construct this estimate.

Kalman filter at the sensor.

Switched linear filter at all other nodes.

» Compare the time-stamps of the estimates received along incoming edges with
the one in memory.

» Choose the estimate with the most recent time-stamp.

* Update estimate and transmit it along outgoing edges.

Properties of the Algorithm ( ,) 2%53?&‘2‘}???3

Choose the estimate that Update and transmit it along
uses latest measurement outgoing edges

* Same performance as transmitting all previous measurements at every
time step (“optimality”).

* Constant amount of transmission and memory required.

*Each received packet ‘washes away’ the effect of all previous drops.

Optimal for arbitrary network (may even have cycles).
No assumption needed about the packet dropping process.
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Special Networks: Stability of Error Covariance (,} engineering

Tp41 = Azy, + wy, (process)

Necessary and sufficient conditions for boundedness of the error covariance
(mean-square stability)
Parallel Networks:

a\a (TIpo) | p(A) [P< 1
N\ )

1

(independent drops
assumed for simplicity)

(maxp;) | p(A) [*< 1

Series Networks:
N\ N\ AN

For a series combination of n links each with same drop probability p, the condition is
2
plp(A)[7<1

But if transmitting measurements itwould be (1 — (1 — p)™) | p(A) |°< 1
| p() PE1 (< 1)

) UC SANTA BARBARA

General Networks: Stability of Error Covariance (,} engineering

Necessary and sufficient conditions for boundedness of the error covariance
(mean-square stability)
General networks:

2
Pmaz—cut | p(A) < 1

Max-cut probability

1. For each cut-set, identify edges that span from the source set to the sink set.
2. Calculate the cut-set probability: Deut = (Hpi)

3. Identify the maximum cut-set probabiity p,,z—cu

cut*

PN pa
E—> E—)> m====) Cut-set probability = P4P5
b2 bs b5
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General Networks: Performance

W engineering

The expected steady state error covariance can be evaluated using a closed
formula

process matrix ideal cov.

vec (P®) = (AR A—-I)G(A® A)+ I)vec (P")+G(A® A)vec (Q)

network noise cov.

Details in Dana et al. (TAC)

( %\ UC SANTA BARBARA
A}

W engineering

Process \

Choose the estimate Time update and
Sensor that uses latest transmit along outgoing
measurement edges

Network

Condition for Stability of Error Covariance

Estimator Pmax—-cut | p(A) |2< 1

Use (limited) memory and processing power at the intermediate nodes to obtain
better performance.

* Recursive algorithm for optimal performance identified.

* Necessary and sufficient stability conditions provided.
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Network protocols & Control laws ¥ engineering

network view: control view:

application [€ > application
transport ¢ > transport controller process
network > network |7 Sk —‘
datalink (€ > data link ', delay
physical < > physical

This lecture: Co-design of network protocols and control algorithms

1. Characterize key parameters that determine the stability/performance of
a networked controls system

2. Construct protocols that directly take these parameters into
considerations

[llustrative examples:

* data link layer: medium access control

* transport layer: error correction (& flow control)
* network layer: routing

1 UC SAI:ITA BAR]?ARA
¥ engineering




